
The disadvantages (i), (ii) and (iii) mentioned in Section
3.3.3 unfortunately make the implementation of deadlock
avoidance difficult in real systems. Our novel approach to
mixing deadlock detection and avoidance (thus, not
requiring advanced, a priori knowledge of resource
requirements) contributes to easier adaptation of deadlock
avoidance in an MPSoC by accommodating maximum
freedom (i.e. maximum concurrency of requests and grants
depending on a particular execution trace) with the
advantage of deadlock avoidance.
The DAU avoids deadlock by not allowing any grant or

request that leads to a deadlock. In the case of livelock
resulting from attempts to avoid deadlock, the DAU asks
one of the processes involved in the livelock to release
resource(s) so that the livelock can also be resolved.
Although many deadlock avoidance approaches have

been introduced so far [21, 25, 26, 30], to the best of our
knowledge, there has been no prior work in a hardware
implementation of deadlock avoidance. The DAU not only
provides a solution to both deadlock and livelock but is also
up to 312� faster than an equivalent software solution
(please see the details in Section 5).
In the following few Sections, we further describe these

new approaches in more detail.

4.2 New deadlock detection methodology

4.2.1 Parallel deadlock detection algorithm:
The parallel deadlock detection algorithm (PDDA)
dramatically reduces deadlock detection time by mapping
a resource allocation graph (RAG [22]; its state is
denoted as gij [29]) onto a matrix Mij that will have
exactly the same request and grant edges as the RAG has
but with another notation for each edge. We define a
RAG matrix and a terminal reduction sequence before
introducing PDDA that exploits the terminal reduction
sequence.

Definition 6: The purpose of this definition is to define
matrices that correspond to graph g; system gi and state gij
[29]. A RAG matrix M is a matrix mapped from a RAG g
and represents an arbitrary system with processes and
resources. A system matrix Mi is defined as a matrix
representation of a particular system gi; where the rows
(fixed in size) of matrix Mi represent the fixed set Q of
resource nodes of gi; and the columns (fixed in size) of
matrix Mi represent the fixed set P of process nodes of gi:
We denote another notation of this relationship as Mi � gi
for the sake of simplicity. A state matrixMij is a matrix that
represents a particular system state gij; i.e. Mij � gij: Edges
E (consisting of request edges R and grant edges G [29]) in
system state gij are mapped onto the corresponding array
elements using the following rule:
Given E ¼ fR [Gg from gij;

Mij ¼

a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

.
ast

..

.

am1 am2 � � � amn

2

6

6

6

4

3

7

7

7

5

for all rows 1 � s � m and for all columns 1 � t � n :

ast ¼ gs*t (or simply ‘g’),
if there exists a grant edge ðqs; ptÞ 2 G

ast ¼ rt!s (or simply ‘r’),
if there exists a request edge ðpt; qsÞ 2 R

ast ¼ 0st (‘0’ or a blank space), otherwise,

where m and n are the numbers of resources and processes,
respectively.

Example 3: State matrix representation
The system state gij shown on the upper half of Fig. 11 can

be represented in the matrix form shown in the bottom half
of Fig. 11.

Based on a state matrixMij; instead of finding an exact cycle
(as other algorithms do, e.g. see Chap. 4 of [22]), PDDA
removes edges that have nothing to do with cycles; this edge
removal process is called a terminal reduction sequence.
After the terminal reduction sequence (e.g. using k edge
removal steps) removes all reducible edges (resulting in an
‘irreducible’ matrix Mi; jþkÞ; if edges still exist, then
deadlock(s) exist. On the other hand, if Mij has been
completely reduced, no deadlock exists. Intuitively, remov-
ing reducible edges corresponds to the best sequence of
operations a particular process can execute to help unblock
other processes. Before describing the terminal reduction
sequence in detail, we define what we mean by ‘terminal’ in
different uses.

Definition 7: A terminal row ts is a row s (recall that row s
corresponds to resource qs) of matrix Mij such that either
(i) all non-zero entries fastr 6¼ 0; 1 � tr � ng are request
entries rtr!s with at least one request entry (i.e. one or more
request entries and no grant entry in the row), or (ii) one
entry astg ; 1 � tg � n; is a grant gs*tg

with the rest of the
entries fast; 1 � t � n; t 6¼ tgg equal to zero.

Definition 8: A terminal column tt is a column t (recall that
column t corresponds to process pt) of matrix Mij such
that either (i) all non-zero entries fast 6¼ 0; 1 � s � mg
are request entries with at least one request entry (i.e. one
or more request entries and no grant entry in the column),

Fig. 11 Matrix representation example

Parallel Deadlock Detection Algorithm

Abstract

or (ii) all nonzero entries fast 6¼ 0; 1 � s � mg are grant
entries with at least one grant entry (i.e. one or more grant
entries and no request entry in the column).

Definition 9: An edge that belongs to either a terminal row
ts or a terminal column tt is called a terminal edge.

The next definition defines one step of a terminal
reduction sequence.

Definition 10: A terminal reduction step � is a unary
operator � : Mij 7!Mi; jþ1; where � calculates the terminal
edge set and returns Mi; jþ1 such that all terminal edges
found are removed by setting the terminal entries found to
zero; thus, the next iteration Mi; jþ1 will start with equal or
fewer total edges as compared to Mij: This terminal
reduction step is denoted as �ðMijÞ; i.e. Mi; jþ1 ¼ �ðMijÞ:

Note that the removals of terminal edges inMij enable the
discovery of new terminal nodes in Mi; jþ1: Any new
terminal nodes that appear were connect nodes in Mij that
were connected to terminal nodes in Mij:

Example 4: One step of terminal reduction ð�Þ
Figure 12b shows a new matrix Mi;jþ1 after a matrix

reduction step �; defined in Definition 10, is applied to Mij

shown in (a). In matrix Mij; since q2 and q3 are terminal
rows by Definition 7, all the edges in their rows are terminal
edges. Therefore, all the edges in rows q2 and q3 can
be removed. Likewise, p2; p4 and p6 are terminal columns
by Definition 8; hence, all edges in these columns can be
removed, resulting in matrix Mi; jþ1:

Definition 11: A terminal reduction sequence �, applicable
to a matrix Mij; is a sequence of k terminal reduction steps
� (recall that � is a terminal reduction step) such that:
(i) Mij 7!Mi; jþ1 7! � � � 7!Mi; jþk; (ii) Mi; jþk is irreducible

(i.e. �ðMi;jþkÞ ¼ Mi; jþkÞ; and (iii) fMi; jþh; 0 � h< kg are
all unique and reducible. A terminal reduction sequence is
called a complete reduction when the sequence of terminal
reduction steps corresponding to � results inMi; jþk such that
the irreducible state matrix Mi; jþk contains all zero entries
(note that this means that gi; jþk corresponding to Mi; jþk has
no edges: Eðgi; jþkÞ ¼ ;Þ: A terminal reduction sequence is
called an incomplete reduction when � returns Mi; jþk with
at least one non-zero entry (note that this means that
gi; jþk corresponding to Mi; jþk has at least one edge:

Eðgi; jþkÞ 6¼ ;Þ: Another representation of a terminal
reduction sequence is shown in (1):

Mi; jþk ¼ �ðMijÞ
¼ �ðkÞð. . . �ð2Þð�ð1ÞðMijÞÞ . . .Þ
¼ �ð. . . �ð�ðMijÞÞ . . .Þ ð1Þ

We now introduce two algorithms, one being a terminal
reduction sequence algorithm that implements the terminal
reduction sequence �; the other being PDDA, which
employs the terminal reduction sequence algorithm.

Algorithm 1 is an implementation of the terminal
reduction sequence � shown in Definition 11. We summarise

the operation of Algorithm 1. Lines 2 and 3 of Algorithm 1
initialise two variables: iterator k and matrix Miter; which is
a copy of an input argument Mij: Line 5 finds all terminal
rows (Definition 7), and line 6 finds all terminal columns
(Definition 8). Line 7 checks whether Miter has more
terminal edges, and, if no more terminal edges exist, the
current iteration ends. Lines 8 and 9 remove all the terminal
edges found at the current iteration. On the whole, the
terminal reduction step �ðMijÞ of Definition 10 corresponds
to lines 5–9 of Algorithm 1, which iterates until the matrix
Miter becomes irreducible. Note that, in hardware
implementation, lines 5 and 6 of Algorithm 1 are executed
at the same time, as are lines 8 and 9.

Algorithm 1: terminal reduction sequence algorithm

1 �ðMijÞf
2 k ¼ 0;
3 Miter ¼ Mij;
4 while (1) {

=� parallel on �=
5 calculate ts for all s; =

� terminal rows �=
6 calculate tt for all t; =

� terminal columns �=
=� parallel off �=

7 if (neither 9ts nor 9ttÞ break;
=� if no more terminals �=

=� parallel on �=
8 for all s such that 9ts;

set all entries in row s of Miter to zero;
9 for all t such that 9tt;

set all entries in column t of Miter to zero;
=� parallel off �=

10 k ¼ k þ 1;
11 }
12 Mi; jþk ¼ Miter;
13 return Mi; jþk;
14 }

Algorithm 2: Parallel deadlock detection algorithm

1 PDDA ðgijÞ {
2 M½s; t� ¼ ½ast�; where
3 s ¼ 1; . . . ;m and t ¼ 1; . . . ; n
4 ast ¼ r; if 9ðpt; qsÞ 2 EðgijÞ
5 ast ¼ g; if 9ðqs; ptÞ 2 EðgijÞ
6 ast ¼ 0; otherwise.
7 Mi; jþk ¼ �ðMijÞ; =� call Algorithm 1 �=

8 if ðMi; jþk ¼¼ ½0�Þ f=� if matrix of all zeros �=
9 return 0; =� no deadlock �=

10 } else {
11 return 1; =� deadlock detected �=
12 }
13 }

We now summarise the operation of Algorithm 2. Lines
2–6, given gij; construct the corresponding matrix Mij

according to Definition 6. Next, line 7 calls Algorithm 1
with argument Mij: When Algorithm 1 is completed, lines
8–12 of Algorithm 2 determine whether gij has a deadlock
or not by considering returned matrix Mi;jþk : if Mi;jþk is
empty, the corresponding gij has no deadlock; otherwise,
deadlock(s) exist. Finally, Algorithm 2 returns ‘1’ if the
system state under consideration has deadlock(s); otherwise,
Algorithm 2 returns ‘0’ indicating no deadlock exists. Note
that Algorithm 2, which includes Algorithm 1, is referred to
as PDDA.

We have proven that PDDA detects deadlock if and only
if there exists a cycle in state gij [29]. We have also provenFig. 12 One terminal reduction step ð�Þ example

174

that our hardware implementation of Algorithm 1 completes
its computation in at most 2�minðm;nÞ�3¼Oðminðm;nÞÞ
steps, wherem is the number of resources and n is the number
of processes [29].

4.2.2 Hardware implementation of PDDA:
DDU: We here summarise the operation of PDDA in
the hardware point of view, i.e. how to parallelise PDDA to
implement in hardware (please see [29] for more infor-
mation, which describes the sequence of DDU operations in
great detail). As introduced in Section 4.2.1., a given system
state gij is equivalently represented by a system state matrix
Mij (shown in equation 2) so that, based on Mij; the DDU
can perform the sequence of operations shown in Algorithm
1 and 2 and decide whether the given state has a deadlock or
not:

Mij ¼

a11 � � � a1t � � � a1n
..
. ..

. ..
. ..

. ..
.

as1 � � � ast � � � asn
..
. ..

. ..
. ..

. ..
.

am1 � � � amt � � � amn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ Miter ð2Þ

where m is the number of resources and n is the number of
processes.
Each matrix element ast in Mij represents one of the

following: gs!t (a grant edge), rt!s (a request edge) or 0st
(no edge). Since ast is ternary-valued, ast can be minimally
defined as a pair of two bits ast ¼ ðarst; agstÞ: If an entry ast is a
grant edge g, bit arst is set to 0, and agst is set to 1; if an entry
ast is a request edge r, bit arst is set to 1, and agst is set to 0;
otherwise, both bits arst and agst are set to 0. Hence, an entry
ast can be only one of the following binary encodings: 01 (a
grant edge), 10 (a request edge) or 00 (no activity). Thus,
Miter in line 3 of Algorithm 1 can be written as shown in (3):

Miter ¼

ar11; a
g
11

� �

� � � ar1t; a
g
1t

� �

� � � ar1n; a
g
1n

� �

..

. ..
. ..

. ..
. ..

.

ars1; a
g
s1

� �

� � � arst; a
g
stð Þ � � � arsn; a

g
snð Þ

..

. ..
. ..

. ..
. ..

.

arm1; a
g
m1

� �

� � � armt; a
g
mtð Þ � � � armn; a

g
mnð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð3Þ

Finding terminal rows and terminal columns, which
corresponds to lines 5 and 6 of Algorithm 1, requires three
logical operations performed in sequence: (i) bit-wise-or
(BWO); (ii) eXclusive-OR (XOR); and (iii) OR. Two
separate BWO operations, shown in (4), take place through
each row and each column of Miter; all in parallel at the
same time at each iteration in the DDU:

BWOc
iter ¼ 8t; arct; a

g
ctð Þ ¼ 8t;

_

m

s¼1

arst;
_

m

s¼1

agst

 !

BWOr
iter ¼ 8s; arrs; a

g
rsð Þ ¼ 8s;

_

m

t¼1

arst;
_

m

t¼1

agst

 !

ð4Þ

where notation 8 means for all and notation
W

means bit-
wise-or of elements.
Then, from the results of two BWO operations, the XOR

operations, shown in (5), for each row and each column
occur all in parallel:

XORc
iter ¼ 8t; tct ¼ 8t; arct � agctð Þ

XORr
iter ¼ 8s; trs ¼ 8s; arrs � agrsð Þ ð5Þ

where � denotes eXclusive-OR.
Next, the OR operation, shown in (6), produces a

termination condition (i.e. the reducibility test of matrix
Miter; which corresponds to line 7 in Algorithm 1) at each
iteration. That is, the termination condition represents
whether a current matrix is further reducible or not. If Titer
equals ‘1’, meaning that more terminal edge(s) exist, the
iterations continue. If the current matrix Miter is irreducible
(i.e. it has no terminal edges), Titer will become ‘0’; thus,
further iterations would accomplish nothing. This irreduci-
bility condition can be written as

Titer ¼ tC _ tRð Þ ¼
_

n

t¼1

tct _
_

m

s¼1

trs

 !

ð6Þ

Before finishing PDDA, one more important process
remains: deadlock detection, which requires two more
parallel logic operations. Equation (7) represents the
existence of connect nodes in each column and in each
row, respectively, involved in cycle(s):

ANDc
iter ¼ 8t;fct ¼ 8t; arct ^ agctð Þ

ANDr
iter ¼ 8s;frs ¼ 8s; arrs ^ agrsð Þ

ð7Þ

where ^ denotes bit-wise-and of elements.
Finally, (8) produces the result of deadlock detection,

which corresponds to lines 8–12 of Algorithm 2:

Diter ¼ ðfc _ frÞ ¼
_

n

t¼1

fct _
_

m

s¼1

frs

 !

when Titer ¼ 0

ð8Þ

4.2.3 Architecture of deadlock detection unit:
The DDU consists of three parts as shown in Fig. 13: matrix
cells, weight cells and a decide cell. Part 1 is the system state
matrix Mij consisting of an array of matrix cells ast: Part 2
consists of two weight vectors: (i) one column weight vector
below the matrix cells and (ii) one row weight vector on the
right side of matrix cells. The column weight vector is
expressed as follows:

Wc ¼ wc1 wc2 � � � wct � � � wcn½ � ð9Þ
where n is the number of processes, and 8t;wct (each
column weight cell) is a pair ðtct;fctÞ; representing whether

Fig. 13 DDU architecture

175

the corresponding process node is a terminal node (1, 0), a
connect node (0, 1), or neither (0, 0). The row weight vector
is expressed as follows:

Wr ¼ wr1 wr2 � � � wrs � � � wrm½ �T ð10Þ
where m is the number of resources, and 8s;wrs (each row
weight cell) is a pair ðtrs;frsÞ; representing whether the
corresponding resource node is a terminal node, a connect
node or neither. Part 3 is one decide cell Diter at the bottom
right corner of the DDU.

Figure 13 shows the architecture of the DDU for three
processes and three resources. This DDU example has nine
matrix cells ð3� 3Þ for all edge elements of Mij; six weight
cells (three for column processing and three for row
processing), and one decide cell for making the decision
of deadlock.

4.2.4 Synthesis results for DDU: We used the
Synopsys Design Compiler (DC) to synthesise the DDU
with a 0:3 mm standard cell library from AMIS [31]. Table 1
shows the synthesis results of five types of DDUs
customised according to the number of processes and
resources in an SoC. The fourth column, denoted ‘worst
case no. of iterations’, represents the number of worst case
number of iterations for the corresponding DDU.

Please note that a system example using the DDU,
including quantitative performance results, will be
presented in Section 5.3.

4.3 New deadlock avoidance methodology

In our new approach to deadlock avoidance, we utilise the
parallel deadlock detection algorithm (PDDA) and DDU.
Unlike the DDU, we have thought that it would be very
helpful if there were a hardware unit that not only detects
deadlock but also avoids possible deadlock within a few
clock cycles and with a small amount of hardware.

The deadlock avoidance unit (DAU), if employed, tracks
all requests and releases of resources. In other words, the
DAU receives, interprets and executes commands from
processes; then it returns DAU processing results back to
processes. The DAU avoids deadlock by not allowing any
grant or request that leads to a deadlock.

4.3.1 New deadlock avoidance algorithm:
Algorithm 3 shows our deadlock avoidance approach. We
initially considered two other deadlock avoidance
approaches but found Algorithm 3 to be better because it
resolves livelock more actively and efficiently than two
other approaches [28].

Let us proceed to describe Algorithm 3 step by step.
When a process requests a resource from the DAU (line 2 of
Algorithm 3), the DAU checks for the availability of
the resource requested (line 3). If the resource is available

(i.e. no one is using it), the resource will be granted to the
requester immediately (line 4). If the resource is not
available, the DAU check the possibility of request dead-
lock (R-dl) (line 5). If a request would cause request
deadlock (R-dl) (line 5) – note that the DAU tracks all
requests and releases – the DAU compares the priority of
the requester with that of the current owner of the requested
resource. If the priority of the requester is higher than that of
the current owner of the resource (line 6), the DAU makes
the request be pending for the requester (line 7), an then the
DAU asks the owner of the resource to give up the resource
so that the higher priority process can proceed (line 8,
the current owner may need time to finish or checkpoint its
current processing). On the other hand, if the priority of the
requester is lower than that of the owner of the resource (line
9), the DAU asks the requester to give up the resource(s)
that the requester already has but is most likely not using yet
(since all needed resources are not yet granted, line 10).

Algorithm 3: Deadlock avoidance algorithm (DAA)

DAA (event) {
1 case (event) {
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock

(R-dl)
6 if the priority of the requester greater than that

of the owner
7 make the request be pending
8 ask the current owner of the resource to

release the resource
9 else

10 ask the requester to give up resource(s)
11 end-if
12 else
13 make the request be pending
14 end-if
15 break
16 a release:
17 if any process is waiting for the released resource
18 if the grant of the resource would cause grant

deadlock
19 grant the resource to a lower priority process

waiting
20 else
21 grant the resource to the highest priority

process waiting
22 end-if
23 else
24 make the resource become available
25 end-if
26 } end-case
}

When the DAU receives a resource release command from a
process (line 16) and any process is waiting for the resource
(line 17), before actually granting the released resource to
one of the requesters, the DAU temporarily marks a grant of
the resource to the highest priority process (on its internal
matrix). Then, to check potential grant deadlock, the DAU
executes its deadlock detection algorithm. If the temporary
grant does not cause grant deadlock (G-dl) (line 20), it
becomes a fixed grant; thus the resource is granted to the
highest priority requester (line 21). On the other hand, if the
temporary grant causes G-dl (line 18), the temporary grant
will be undone; then, because the released resource cannot

Table 1: Synthesis results for DDU

No. of processes �

no. of resources

Lines of

Verilog

Area in terms of

two-input

NAND gates

Worst case

no. of

iterations

2 � 3 49 186 2

5 � 5 73 364 6

7 � 7 102 455 10

10 � 10 162 622 16

50 � 50 2682 14142 96

176

