Parallel Deadlock Detection Algorithm

Abstract

The disadvantages (i), (ii) and (iii) mentioned in Section
3.3.3 unfortunately make the implementation of deadlock
avoidance difficult in real systems. Our novel approach to
mixing deadlock detection and avoidance (thus, not
requiring advanced, a priori knowledge of resource
requirements) contributes to easier adaptation of deadlock
avoidance in an MPSoC by accommodating maximum
freedom (i.e. maximum concurrency of requests and grants
depending on a particular execution trace) with the
advantage of deadlock avoidance.

The DAU avoids deadlock by not allowing any grant or
request that leads to a deadlock. In the case of livelock
resulting from attempts to avoid deadlock, the DAU asks
one of the processes involved in the livelock to release
resource(s) so that the livelock can also be resolved.

Although many deadlock avoidance approaches have
been introduced so far [21, 25, 26, 30], to the best of our
knowledge, there has been no prior work in a hardware
implementation of deadlock avoidance. The DAU not only
provides a solution to both deadlock and livelock but is also
up to 312x faster than an equivalent software solution
(please see the details in Section 5).

In the following few Sections, we further describe these
new approaches in more detail.

4.2 New deadlock detection methodology

4.2.1 Parallel deadlock detection algorithm:
The parallel deadlock detection algorithm (PDDA)
dramatically reduces deadlock detection time by mapping
a resource allocation graph (RAG [22]; its state is
denoted as y; [29]) onto a matrix M;; that will have
exactly the same request and grant edges as the RAG has
but with another notation for each edge. We define a
RAG matrix and a terminal reduction sequence before
introducing PDDA that exploits the terminal reduction
sequence.

Definition 6: The purpose of this definition is to define
matrices that correspond to graph y, system 7; and state y;;
[29]. A RAG matrix M is a matrix mapped from a RAG vy
and represents an arbitrary system with processes and
resources. A system matrix M; is defined as a matrix
representation of a particular system y;, where the rows
(fixed in size) of matrix M; represent the fixed set Q of
resource nodes of y;, and the columns (fixed in size) of
matrix M, represent the fixed set P of process nodes of ;.
We denote another notation of this relationship as M; = y;
for the sake of simplicity. A state matrix M; is a matrix that
represents a particular system state y;;, i.e. M;; = y;;. Edges
E (consisting of request edges R and grant edges G [29]) in
system state y; are mapped onto the corresponding array
elements using the following rule:
Given E = {R U G} from y;,
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Fig. 11 Matrix representation example

oy = 85— (or simply ‘g’),

if there exists a grant edge (¢,,p,) € G
o = 1y (Or simply ‘r’),

if there exists a request edge (p;,q;) € R
o, = 04 (‘0° or a blank space), otherwise,

where m and n are the numbers of resources and processes,
respectively.

Example 3: State matrix representation

The system state y;; shown on the upper half of Fig. 11 can
be represented in the matrix form shown in the bottom half
of Fig. 11.

Based on a state matrix M ;, instead of finding an exact cycle
(as other algorithms do, e.g. see Chap. 4 of [22]), PDDA
removes edges that have nothing to do with cycles; this edge
removal process is called a terminal reduction sequence.
After the terminal reduction sequence (e.g. using k edge
removal steps) removes all reducible edges (resulting in an
‘irreducible’ matrix M, ), if edges still exist, then
deadlock(s) exist. On the other hand, if M; has been
completely reduced, no deadlock exists. Intuitively, remov-
ing reducible edges corresponds to the best sequence of
operations a particular process can execute to help unblock
other processes. Before describing the terminal reduction
sequence in detail, we define what we mean by ‘terminal’ in
different uses.

Definition 7: A terminal row t, is a row s (recall that row s
corresponds to resource g,) of matrix M;; such that either
(i) all non-zero entries {o, # 0,1 <1, <n} are request
entries r, _, with at least one request entry (i.e. one or more
request entries and no grant entry in the row), or (ii) one
entry o ,1 <1, <n, is a grant 8s—1, with the rest of the
entries facm 1 <t<n,t#t,} equal to zero.

Definition 8: A terminal column 7, is a column t (recall that
column t corresponds to process p,) of matrix M;; such
that either (i) all non-zero entries {o; # 0,1 <s < m}
are request entries with at least one request entry (i.e. one

or more request entries and no grant entry in the column),



or (i) all nonzero entries {oy # 0,1 < s < m} are grant
entries with at least one grant entry (i.e. one or more grant
entries and no request entry in the column).

Definition 9: An edge that belongs to either a terminal row
T, or a terminal column 7, is called a terminal edge.

The next definition defines one step of a terminal
reduction sequence.

Definition 10: A terminal reduction step e is a unary
operator ¢ : M;—M, ;. ;, where ¢ calculates the terminal
edge set and returns M; ;. such that all terminal edges
found are removed by setting the terminal entries found to
zero; thus, the next iteration M, ;,, will start with equal or
fewer total edges as compared to M. This terminal
reduction step is denoted as e(M;), i.e. M, ;.1 = ¢(M;).

Note that the removals of terminal edges in M;; enable the
discovery of new terminal nodes in M, ;. ;. Any new
terminal nodes that appear were connect nodes in M;; that
were connected to terminal nodes in Mj;.

Example 4: One step of terminal reduction (e)

Figure 12b shows a new matrix M, after a matrix
reduction step ¢, defined in Definition 10, is applied to M;;
shown in (a). In matrix Mj;, since g, and g3 are terminal
rows by Definition 7, all the edges in their rows are terminal
edges. Therefore, all the edges in rows g, and g3 can
be removed. Likewise, p,,p4 and pg are terminal columns
by Definition 8; hence, all edges in these columns can be
removed, resulting in matrix M, ;.

Definition 11: A terminal reduction sequence &, applicable
to a matrix M;, is a sequence of k terminal reduction steps
€ (recall that € is a terminal reduction step) such that:
(l) Mij'_)Mi,j+1'_> s HMi,jJrk; (ll) Ml'7j+k is irreducible
(e. eM;j ) =M, y); and (iii) {M; ;,,0 <h<k} are
all unique and reducible. A terminal reduction sequence is
called a complete reduction when the sequence of terminal
reduction steps corresponding to & results in M; ;. such that
the irreducible state matrix M; ;. contains all zero entries
(note that this means that y; ;;, corresponding to M, ;,; has
no edges: E(); ;1) = ). A terminal reduction sequence is
called an incomplete reduction when § returns M; ;. with
at least one non-zero entry (note that this means that
Vi j+x corresponding to M, ;. has at least one edge:
E(y; j+x) # V). Another representation of a terminal
reduction sequence is shown in (1):

M = EMy)
=e0( .. e(z)(em(M,»j)) o)
=e€(...e(e(My))...) (1)
We now introduce two algorithms, one being a terminal
reduction sequence algorithm that implements the terminal

reduction sequence &, the other being PDDA, which
employs the terminal reduction sequence algorithm.

Algorithm 1 is an implementation of the terminal
reduction sequence & shown in Definition 11. We summarise
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Fig. 12  One terminal reduction step (€) example
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the operation of Algorithm 1. Lines 2 and 3 of Algorithm 1
initialise two variables: iterator k and matrix M, which is
a copy of an input argument M;. Line 5 finds all terminal
rows (Definition 7), and line 6 finds all terminal columns
(Definition 8). Line 7 checks whether M,,, has more
terminal edges, and, if no more terminal edges exist, the
current iteration ends. Lines 8 and 9 remove all the terminal
edges found at the current iteration. On the whole, the
terminal reduction step €(M;) of Definition 10 corresponds
to lines 5—9 of Algorithm 1, which iterates until the matrix
M,,. becomes irreducible. Note that, in hardware
implementation, lines 5 and 6 of Algorithm 1 are executed
at the same time, as are lines 8 and 9.

Algorithm 1: terminal reduction sequence algorithm

1 f(Mlj){
2 k=0
3 Miter = Ml]’

4 while (1) {
/" parallel on */

5 calculate =, for all s; /™ terminal rows ™/
6 calculate 7, for all t; /* terminal columns */
/¥ parallel off */

7 if (neither 3t nor 3t,) break;
/" if no more terminals * /
/" parallel on */
8 for all s such that 3z,
set all entries in row s of M, to zero;
9 for all t such that Iz,
set all entries in column t of M;,, to zero;
/¥ parallel off */
10 k=k+1;
11}
12 M j = Miers
13 return M; j 4;
14}

Algorithm 2: Parallel deadlock detection algorithm
1 PDDA (y;) {

2 M(s,t] = [oy], where

3 s=1,....mandt=1,...,n

4 oty =7, if Iprqs) € E(Vij)

5 oy = &, if Iqs,p1) € E(vy)

6 o, = 0, otherwise.

7 M, i = &§My); /" call Algorithm 1~/
8 if (M ;1 == [0]) {/" if matrix of all zeros */
9 return 0; /* no deadlock */

10 } else {

11 return 1; /* deadlock detected * |
2

13}

We now summarise the operation of Algorithm 2. Lines
2-6, given y;, construct the corresponding matrix M;
according to Definition 6. Next, line 7 calls Algorithm 1
with argument M;;. When Algorithm 1 is completed, lines
8—12 of Algorithm 2 determine whether y; has a deadlock
or not by considering returned matrix M, : if M, is
empty, the corresponding y;; has no deadlock; otherwise,
deadlock(s) exist. Finally, Algorithm 2 returns ‘1’ if the
system state under consideration has deadlock(s); otherwise,
Algorithm 2 returns ‘0’ indicating no deadlock exists. Note
that Algorithm 2, which includes Algorithm 1, is referred to
as PDDA.

We have proven that PDDA detects deadlock if and only
if there exists a cycle in state y;; [29]. We have also proven



that our hardware implementation of Algorithm 1 completes
its computation in at most 2 X min(m,n) — 3 = O(min(m,n))
steps, where m is the number of resources and r is the number
of processes [29].

4.2.2 Hardware implementation of PDDA:
DDU: We here summarise the operation of PDDA in
the hardware point of view, i.e. how to parallelise PDDA to
implement in hardware (please see [29] for more infor-
mation, which describes the sequence of DDU operations in
great detail). As introduced in Section 4.2.1., a given system
state y;; is equivalently represented by a system state matrix
M; (shown in equation 2) so that, based on M;, the DDU
can perform the sequence of operations shown in Algorithm
1 and 2 and decide whether the given state has a deadlock or
not:

%1 %r %in
Mij = | %1 Oy Osn | = Miler (2)
Om1 Oyt Linn

where m is the number of resources and » is the number of
processes.

Each matrix element o, in M;; represents one of the
following: g, ., (a grant edge), r,_,; (a request edge) or O,
(no edge). Since oy, is ternary-valued, o, can be minimally
defined as a pair of two bits oy, = (o}, &5,). If an entry o, isa
grant edge g, bit o, is set to 0, and of; is set to 1; if an entry
o, is a request edge r, bit o, is set to 1, and o, is set to 0;
otherwise, both bits o/, and o, are set to 0. Hence, an entry
o, can be only one of the following binary encodings: 01 (a
grant edge), 10 (a request edge) or 00 (no activity). Thus,
M, in line 3 of Algorithm 1 can be written as shown in (3):
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(3)

Finding terminal rows and terminal columns, which
corresponds to lines 5 and 6 of Algorithm 1, requires three
logical operations performed in sequence: (i) bit-wise-or
(BWO); (ii) eXclusive-OR (XOR); and (iii) OR. Two
separate BWO operations, shown in (4), take place through
each row and each column of M,,,, all in parallel at the
same time at each iteration in the DDU:

(O‘;rnb“fnl) (O‘fnn“ﬁn)

s=1

BWO;}@V = vs7 (O{':S’ afs) = vs? <\/ a;t? v aft) (4)
=1

t=1

BWO;,, = Vt, (O‘zr?n “ﬁt) = Vi, (\/ Ol \/ O‘ft)
s=1

where notation V means for all and notation \/ means bit-
wise-or of elements.

Then, from the results of two BWO operations, the XOR
operations, shown in (5), for each row and each column
occur all in parallel:

XOR;, = Vt, 7 = V1, (0, © 0fy)
XOR;ter = VS, Tps = VS, (ais D O‘fs) (5)

where @ denotes eXclusive-OR.

Next, the OR operation, shown in (6), produces a
termination condition (i.e. the reducibility test of matrix
M., which corresponds to line 7 in Algorithm 1) at each
iteration. That is, the termination condition represents
whether a current matrix is further reducible or not. If T},
equals ‘1’, meaning that more terminal edge(s) exist, the
iterations continue. If the current matrix M, is irreducible
(i.e. it has no terminal edges), Tj,, will become ‘0’; thus,
further iterations would accomplish nothing. This irreduci-
bility condition can be written as

Titer = (TC \ TR) = <\/ Ter \ \/ Trs) (6)
=1 s=1

Before finishing PDDA, one more important process
remains: deadlock detection, which requires two more
parallel logic operations. Equation (7) represents the
existence of connect nodes in each column and in each
row, respectively, involved in cycle(s):

ANDy,, = V1, ¢y = V1, (010 N 0Fy)

7
ANDfy — s,y — Vs, (o o) @)

where A denotes bit-wise-and of elements.
Finally, (8) produces the result of deadlock detection,
which corresponds to lines 8—12 of Algorithm 2:

Diter = (¢c \ d)r) = (\n/ d)ct \ \m/ (bm> when Titer =0
=1 s=1
(8)

4.2.3 Architecture of deadlock detection unit:
The DDU consists of three parts as shown in Fig. 13: matrix
cells, weight cells and a decide cell. Part 1 is the system state
matrix Mj; consisting of an array of matrix cells o,. Part 2
consists of two weight vectors: (i) one column weight vector
below the matrix cells and (ii) one row weight vector on the
right side of matrix cells. The column weight vector is
expressed as follows:

W = [Wc'l Wer o0 W o ch] (9)

where n is the number of processes, and Vz,w, (each
column weight cell) is a pair (1., ¢, ), representing whether
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Fig. 13 DDU architecture
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Table 1: Synthesis results for DDU

Area in terms of Worst case
No. of processes X Lines of two-input no. of
no. of resources Verilog NAND gates iterations
2x3 49 186
5x5 73 364
7x7 102 455 10
10x10 162 622 16
50 x 50 2682 14142 96

the corresponding process node is a terminal node (1, 0), a
connect node (0, 1), or neither (0, 0). The row weight vector
is expressed as follows:

W= [er Wia oot Wi Wim ]T (10)

where m is the number of resources, and Vs, w,, (each row
weight cell) is a pair (1., ¢,), representing whether the
corresponding resource node is a terminal node, a connect
node or neither. Part 3 is one decide cell D,,, at the bottom
right corner of the DDU.

Figure 13 shows the architecture of the DDU for three
processes and three resources. This DDU example has nine
matrix cells (3 x 3) for all edge elements of M, six weight
cells (three for column processing and three for row
processing), and one decide cell for making the decision
of deadlock.

4.2.4 Synthesis results for DDU: We used the
Synopsys Design Compiler (DC) to synthesise the DDU
with a 0.3 um standard cell library from AMIS [31]. Table 1
shows the synthesis results of five types of DDUs
customised according to the number of processes and
resources in an SoC. The fourth column, denoted ‘worst
case no. of iterations’, represents the number of worst case
number of iterations for the corresponding DDU.

Please note that a system example using the DDU,
including quantitative performance results, will be
presented in Section 5.3.

4.3 New deadlock avoidance methodology

In our new approach to deadlock avoidance, we utilise the
parallel deadlock detection algorithm (PDDA) and DDU.
Unlike the DDU, we have thought that it would be very
helpful if there were a hardware unit that not only detects
deadlock but also avoids possible deadlock within a few
clock cycles and with a small amount of hardware.

The deadlock avoidance unit (DAU), if employed, tracks
all requests and releases of resources. In other words, the
DAU receives, interprets and executes commands from
processes; then it returns DAU processing results back to
processes. The DAU avoids deadlock by not allowing any
grant or request that leads to a deadlock.

4.3.1 New deadlock avoidance algorithm:
Algorithm 3 shows our deadlock avoidance approach. We
initially considered two other deadlock avoidance
approaches but found Algorithm 3 to be better because it
resolves livelock more actively and efficiently than two
other approaches [28].

Let us proceed to describe Algorithm 3 step by step.
When a process requests a resource from the DAU (line 2 of
Algorithm 3), the DAU checks for the availability of
the resource requested (line 3). If the resource is available

176

(i.e. no one is using it), the resource will be granted to the
requester immediately (line 4). If the resource is not
available, the DAU check the possibility of request dead-
lock (R-dl) (line 5). If a request would cause request
deadlock (R-dl) (line 5) — note that the DAU tracks all
requests and releases — the DAU compares the priority of
the requester with that of the current owner of the requested
resource. If the priority of the requester is higher than that of
the current owner of the resource (line 6), the DAU makes
the request be pending for the requester (line 7), an then the
DAU asks the owner of the resource to give up the resource
so that the higher priority process can proceed (line 8,
the current owner may need time to finish or checkpoint its
current processing). On the other hand, if the priority of the
requester is lower than that of the owner of the resource (line
9), the DAU asks the requester to give up the resource(s)
that the requester already has but is most likely not using yet
(since all needed resources are not yet granted, line 10).

Algorithm 3: Deadlock avoidance algorithm (DAA)
DAA (event) {

1 case (event) {
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock
(R-dl)
6 if the priority of the requester greater than that
of the owner
7 make the request be pending
8 ask the current owner of the resource to
release the resource
9 else
10 ask the requester to give up resource(s)
11 end-if
12 else
13 make the request be pending
14 end-if
15 break
16 a release:
17 if any process is waiting for the released resource
18 if the grant of the resource would cause grant
deadlock
19 grant the resource to a lower priority process
waiting
20 else
21 grant the resource to the highest priority
process waiting
22 end-if
23 else
24 make the resource become available
25 end-if

26  } end-case
}

When the DAU receives a resource release command from a
process (line 16) and any process is waiting for the resource
(line 17), before actually granting the released resource to
one of the requesters, the DAU temporarily marks a grant of
the resource to the highest priority process (on its internal
matrix). Then, to check potential grant deadlock, the DAU
executes its deadlock detection algorithm. If the temporary
grant does not cause grant deadlock (G-dl) (line 20), it
becomes a fixed grant; thus the resource is granted to the
highest priority requester (line 21). On the other hand, if the
temporary grant causes G-dl (line 18), the temporary grant
will be undone; then, because the released resource cannot
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